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ABSTRACT 

Cosmic rays in the magnetic fields carried in the solar wind are continually 

expanded and decelerated, in addition to being convected out of the solar system. 

The effect of the deceleration on the cosmic ray spectrum i s  calculated ibr the case 

that 
that the outward convection of cosmic rays i s  small and for the caseAthe cosmic my 

spectrum i s  a simple power law and the diffusion coefficient i s  independent of energy. 

The calculations are carried out for both particle momentum and energy. It i s  shown 

that a power law spectrum i s  preserved by the deceleration. It i s  shown that the 

deceleration contributes a decrease at high energies of about one third of the total 

modulation. Where the spectrum flattens out a t  lower energies, the deceleration pro- 

duces an increase which partially cancels the reduction by convection. 

*Th is  work was supported by the National Aeronautics and Space Administration 
under Grant NASA-NsG-96-60. 
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I Introduction 

Tbe primary effect of the solar wind on cosmic rays i s  to convect the 

cosmic rays out of the solar system, thereby reducing the cosmic ray density below the 

level i n  intentellar space (Parker, 1958). It was shown more recently (Parker, 1965) 

. that there i s  also a continual adiabatic deceleration of the comic rays in  the quiet- 

day solar wind. The adiabatic deceleration follows from the fact that, i n  the frame of 

reference moving with the average wind velocity, the cosmic ray motion is a random 

walk through expanding magnetic fields. The rate of expansion of the fields carried 

in  a steady radial wind wi th  constant velocity c v i s  v-2 2 v / p  . 
The formal calculations show that cosmic my particles typically lose 5 - 20 percent 

of their original energy while penetrating into the solar system. The energy loss 

to the individual particles does not directly affect the total particle-density, but 

the energy loss slides the cosmic my spectrum down the energy scale, thereby 

affecting the density observed in  a fixed energy interval. The density i n  a fixed 

energy interval may be increased where the spectrum is f lat or i s  rising with in- 

creasing energy and may be decreased where the spectrum i s  falling. Several 

individuals have pointed out that the cosmic my observations are becoming 

sufficiently detailed and quantitative that the energy loss should be included i n  

. the analysis. 

The density reduction by convection and the energy loss associated with 

the Forbush decrease were worked out earlier (Parker, 1958, 1961, 1963, 1965). 

The purpose of the present paper i s  to illustrate the effect of the quiet-day energy loss 

and to compare the effect with he genera! density reduction caused by the outward 
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convection. Unfortunately the effect of the energy loss, though simple in principle, 

i s  a l i t t le  more complicate to compute than the outright removal by convection, 

because the energy loss depends upon the time spent a t  each rudial distance r 

Hence the simple examples given here are illustrative, showing the properties and 

relative magnitude of the deceleration effect, without representing al l  the possible 

complications for large, energy dependent convection and diffusion. But the 

examples contain the basic physical effects and should be useful for comparing and 

discussing the observations. The illustration wi l l  be carried out with the elementary 

example of a uniform rudial solar wind 

out to a distance t = e . The cosmic my diffusion coefficient i s  

taken to be uniform and isotropic in V < R and infinite in f > R . 

. 

v extending with spherical symmetry 

Consider briefly how a change A T  

T of each particle affects the observed spectrum 

represent the interstellar cosmic ray F, c T) 
a particle observed with energy T had an energy 

i n  interstellar space. Then an energy interval T 

of the kinetic energy 

F(T) . k t  

spectrum. Suppose that 

T’= 7- A T  
I 

i s  related to d T  by 

Since F ( T )  d T E (T‘) d T , it follows that 
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But of course this omits the depression of the cosmic my intensity by the factor 

exp (- R v /  5 )  
i s  independent of energy, then including convection gives 

as a consequence of the convection. If R v /  5 

If, however, R v / $  

because the effective value of Rv/ 5 
The complete Fokker-Planck equation must be used in  t h i s  case with an energy 

dependent diffusion coefficient. We do not attempt the general calculation 

with an energy dependent diffusion coefficient here. The energy dependence of 

i s  energy dependent, t h i s  simple form i s  not correct 

changes throughout dece I em t ion. 

P v  /y  leads in practice to a somewhat smaller correction than the 

deceleration alone. Instead we shall illustrate the effects with the simple case 

. Then AT<L T and 

to first order in V /  5 where R Y / $  may be a function 

of T 
reduction and the sliding of particles down the energy scale by the adiabatic 

de ce lera tion. 

. Equation (1) illustrates the effect on the spectrum of both convective 
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II The Basic Equations and Earlier Calculations 

For the simple case of a steady uniform wind with spherical symmetry 

and isotropic diffusion, the genera I Fokker-Planck equation (Parker, 1 965) 

reduces to 

for the comic ray distribution u ( p, ) over radial distance 

and kinetic energy T . It is readily shown that adiabatic expansion of an 

isotropic distribution of comic rays at the rote 

particle energy T at the rate 

p * y  .decreases the 

T dt HL 3 

where 

73 2 M c 2  
T t  M c a  

n ( T )  = 

and M i s  the particle mass in grams. Obviously r? = 2 for non- 

relativistic particles (T ( 4  M c ‘1 and 6 = 1 for extreme 

relativistic particles (7 >> M c ~ ) .  To make the problem tractable, the 

calculations which follow avoid the algebraic complexity of fi  (r) for 
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intermediate particle energies, and treat only n = constant. With 

v*v = + Z v / r  , it follows that 
hr 

41 The parficle momentum is, in fact, simpler to treat, and i s  used in  many contemporary 

analyses of cosmic my variations. The distribution 

tum satisfies the same Fokker-Planck equation as u 7.) , 

viz (2), with T replaced by 

from the fact that 

( C, p )  over momen- 

in  the equation. The simplification results P 

for a l l  values of p 
analyses of the observations, we shall carry through the analysis for the more com- 

licated case of u( r ,  T )  , treating n as a constant. The final 

. Since momentum and energy are both used in  different 

by P analytical results then apply to momentum merely by replacing T -  
and putting n = 1 . 

Solution of (2) was carried out (Parker, 1965) for the special case that 

the diffusion coefficient If i s  independent of particle energy. The 

variables may then be separated by putting V ( f ~  T )  = f(T) R ( 51 , 

where 5 s V f / f  and yo = V /bj , yielding the 
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I *  

two equations 

where d i s  the separation constant. It was shown that the general solu- 

tion in the absence of sources and sinks in r < 1? i s  

f i s  the usual confluent hypergeometric function. 1 :  

The Green's function i s  readily obtained from the general expression (5), 

where 

and i s  pitictj!or!y i n s t r i c t k  because it trzces the deceleration of individual 

particles. Put U (R , T )  'i; (T- Te) , representing unit 
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density of monoenergetic particles T= Ts in interstellar space, with free 

escape of a l l  decelemted particles back into interstellar space from I = R . 
The integral i n  (5) is a Fourier transform between [x and I n  T/% . 
Inverting the transform gives 3 cot) , which upon substitution into (5) gives 

the Green's function 

b 

The cosmic ray distribution u( rr T )  
spectrum E(T 1 i s then 

for any arbitrary interstellar 

/ -  

The main computatimal problem i s  the integration in (6). Th is  was done 

(Parker, 1965) for 3- > 1 , yielding 
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valid for 5,  > 5 . A plot of G (0, TJ Tb 1 i s  given in  

the eariler paper, along with a plot of the resulting mean particle energy (T) 

as a function of '5, . No application of the general Green's function to 

a specific cosmic ray spectrum was given in  the earlier paper. 

111 Effect on the Energy Spectrum 

The present paper carries on from the previous calculations of the decel- 

eration of a monoenergetic bunch of particles. The principle aim i s  to illustrate 

the effect on the cosmic ray spectrum. Two complementary illustrations are given: 

One for a simple power law cosmic my spectrum and the other for a general cosmic 

ray spectrum with R v / l  44 1 . 
A. Power Law: If the interstellar cosmic ray energy spectrum can be written as 

a simple power law I-0 = c r y  , then i t  i s  readily shown from 

equation (2) that the form of the spectrum is  preserved throughout the solar wind. 

is 
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If 3, >> 2 , the asympotic expansion for the confluent hyper- 

geometric function gives 

a t  the origin P 0 . 
It i s  of interest to compare these results a t  a fixed energy T with 

-r 
the value C 7 ea'p J - ye) that i s  derived from the diffusion 

equation i f  deceleration i s  ignored. If 3- 4 1 , it i s  readily seen 

from both (10) and (11) that the deceleration increases the particle density at any 

given energy T . If 7 4 1 - 3 +he increase i s  

so  large as to more than compensate the decrease er& r. ) 
convection. If 7 > 1 the deceleration decreases the particle density 

a t  any given T 
has 3- n/ 2 . 5  . With n = 1 it i s  readily seen from (10) 

caused by 

. As an example, above IO'Oev the cosmic ray spectrum 

- thatwhen 5 -  <L 4 the deceleration contributes a 50 percent 

additional decrease beyond the 

convection alone. It i s  readily seen from (11) that when 

tion contributes the additional factor 

presumably 3, i s  not more than the order of one, the deceleration pro- 

duces about one third of the total depression of the cosmic ray density at any 

1 - ( J e  - 5 )  produced by 

f ,  >) 1 decelera- 

2/ fs to the decrease. Since 
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10 
given energy above 10 ev. At lower energies the deceleration has less 

effect and may in fact produce an increase at low energies where 3- 4 1 , 

as is  perhaps better illustrated by the next example. 

B. Small R ~ / ’ J  : H e n  Rv/y 1-44 4 a more general 

treatment of the problem i s  possible. For then the energy change A T  

of the individual particle i s  small and to a first approximation the energy depen- 

dence of the diffusion coefficient i s  a second order effect which can be neglected. 

The analysis i s  no longer restricted toihe special case that d lj / d  

Further, the calculation i s  simplified enough to permit the treatment of a general 

= Q . 

cosmic my spectrum F o  ( T )  
The main task when J m  4 L  i s  to evaluate the integral i n  (6). 

T h i s  computation i s  carried out in the appendix by noting that the confluent hyper- 

geometric function reduces to a BesseI function, and then evaluating the intezgral 

as the sum of the residues of the poles enclosed by the contwr. The resulting 

energy distribution of an init ially monoenergetic group of particles i s  plotted in  

Fig. 1. The mean energy change of the particles at  the origin i s  

* 
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where (T(P)) i s  the mean energy change of the particles at P ( < lf). 
It i s  a straight forward matter to compute the effect of AT on 

the energy spectrum. Substituting (12) into (1) gives 

to the order considered. The first term in  the square brackets represents the 

reduction by convection. The remaining terms represent the energy loss. Suppose 

-P 
that i n  the extreme relativistic range r‘o (T) OC T 
and . Then n = 1 and J,, xT-’ > 

independent of energy (fl = 0) 
represents the effect of energy 

loss. As pointed out in  the previous example, the energy loss contributes about 

. I which agrees with (10) i f  we make 

The term A ( r + p  = a) 
3 

half as much as the convection to the decrease of the cosmic ray spectrum 

a t  any given extreme relativistic particle em rgy. If /B 
high energies, say L 2 
more than the convection, but 

i s  large at very 

, then the deceleration might there contribute 

re CT) I and the resulting decrease of the 
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spectrum, i s  then small anyway. 

A t  nonrelativistic energies ? may be zero, or negative, and 

in  some cases (Bryant, e t  ai, 1965, and Gloeckler, 1965) of the order 
- -  P 

of 0.5 or less. The decelerntion then contributes an increase. 

It i s  interesting to see what happens at  a maximum in the cosmic ray 

spectrum. Suppose that the interstellar cosmic my spectrum has a maximum at  

T = 7 9  with the simple parabolic form 

insome near neighborhood of the maximum. Then i t  i s  readily shown that 

if the energy dependence of 5 .  i s  neglected. The maximum of F(T) 
shifts down with the individual particles from Ti to 

, The maximum intensity i s  reduced from - L a x =  - r g  ( 1  - n  J J 3 )  
c to 
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to the order considered. Note that the deceleration contributes an increase 

of 3 ,  n / 3  to the cosmic my density at  the maximum. 

The general example for R v / 5  4 L 1 i s  useful up to 

about R Y / $  =: 0.5 . For R Y / ~  larger than one, the 

form (8) can be used. Fig. 2. shows the mean particle energies a t  the origin 

computed from (8) and (1 2). The broken lines represent an arbitrary interpolation 

between the calculated curves for large and small % /q . 
V Discussion 

We have presented the foregoing calculations to illustrate the effect of 

adiabatic decelemtion i n  combination with outward convection on the mecn 

cosmic ray spectrum in  the solar system. The simple examples given here do not 

provide a geneml formula for the cosmic ray spectrum in  terms of the spectrum in 

interstellar space, as can be written down for convection alone. But i t  i s  hoped 

that between the example of the power law spectrum with 

dent of particle energy, and the example of the general spectrum with 

R v / T < d  4 but energy dependent, the important physical 

effects have been illustrated. The examples show that outward convection con- 

tributes about two thirds of the total cosmic ray depression a t  a given particle 

energy above a few times 10 ev, with adiabatic deceleration contributing the rest. 

A t  lower energies the adiabatic deceleration contributes less, i n  some cases actually 

cancelling part of the decrease caused by convection. It must be remembered that 

adiabatic deceleration contributes by itself no net decrease to the total cosmic ray 

particle density, so that the mean contribution over the entire spectrum i s  zero. 

indepen- 7 RY/ 

9 
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The convection leads to a reduction of cosmic ray density at a l l  energies. 

it may prove desirable eventually to work out more complicated examples 

than given in the present paper. Numerical methods wi l l  have to be used in most 

cases because the variables in the Fokker-Planck equation do not separate. The 

actual anisotropy and inhomogeneity of the diffusion coefficient may be included 

too. It was pointed out (Parker, 1965) that the anisotropy has the same effect on 

the depression of the cosmic ray density in the inner solar system as a radial 

. It w i l l  be interesting to see i f  the two effects 1 dependence of 

can be separated short of an extended survey through space. Singer, et al. (1962) 

have studied deceleration in  some detail omitting the convection term from the 

Fokker-Planck equation. 

-- 
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Appendix 

In order to carry out the integration indicated in (6) to obtain the 

Green's function G ( r, T ,  To ) i t  is necessary to determine the 

properties of the confluent hypergeometric function a s  a function of the parameter 

o( . This is most easily done by noting that when f < j l l  44 4 , 

the coefficient of A R/A J in (4) may be approximated by / 
over the ent i re  interval (04 3.1 . ne solution of he approximate form 

of the differential equation (4) i s  exactly YV2 J (pr", 
2 

where p = -  8 ( 1  t d n H / 3 )  . 
Thus 

(the confluent hypergeometric function has the value one at 

Note that this equality depends only upon 5 4 4 and i s  valid for all 

values of O( no matter how large. If follows that 

3 = 0 . 

+a 
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Th is  integral i s  readily evaluated using Cauchy's theorem. 

It i s  evident from the definition of p that /B has the 
I 

'la 
asymptotic form (8, ~ / 3 )  e x p  L ( 37c/4) as #++a 

and J $n0t/3/''&@4)) as o( -00 . A t  O( r O  

we have /6 
of P 

'/ z 
c' z3'= . On the asymptotic branch (an 0(/3) exp( 3 d 4 )  

the asymptotic form for the Bessel functions gives 

Since fsI > 3 , it i s  evident that these factors converge like 

o( 4 3 t m  . Hence the integrand 

converges properly along the real axis. 

The integrand has simple poles at the zeros of Jt (p 3;') , 

which i s  a regular point. The zeros of 4 (4 <? except for f = 0 
occur only for the real values 3.829, 7.016, 10.173, 13.324, . . . of the 
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denotes the value of /8 at  the 

, it follows that the zeros l ie a t  the values 

of M 

For 5” d d  4 i s  i s  readily shown that /dn >> J for a l l  WI . 
Hence the poles l ie along the positive imaginery d-axis. 

Consider how the contourmay be closed. If the imaginery part of q 

i s  large and positive, then 

The Bessel functions do not go to zero as d -)+a> so the 

integrand vanishes as I w ,  ol i f  and only i f  T < T a  . 
If the imaginery part of ot i s  large and negative, then p hasagain 

the above form. The BesseI functions both grow large as e z p  I Ik q )  , 

so that the integrand vanishes as I r n  01 - 00 i f  and only i f  

‘/Z 

> 7. . It i s  evident, therefore, that when IT 7 T e  the contour 
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should be closed around the lower half plane. There are no poles in the lower 

half plane, with the resuit h a t  U (r, T )  O for T > I, . 
This i s  to be expected since a l l  the particles are decelerated. None are accelerated. 

4 #l-len T< 7, the contour must be closed round the upper 

half plane, giving 

In the vicinity of the pole @'m write o f =  W m + C  . It i s  

readily shown that 

u ( p ,  7)  as the sum of the residues of the poles. 
Q 

in the neighborhood of the pole so that the sum of the residues gives 

In particular, the energy distribution a t  the origin i s  
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The series (A3) and (A4) converge if, and only if T< To . There 

are however some difficulties which arise with the convergence when average 

values are computed. For instance, the particle density i s  

7 0  

N ( 4  = d T  U k T >  

4 

t 

This series converges for 

form of the individual terms for large 4 ( p a  > > 2 )  . But for 

0 4 3 d 4 , as i s  readily shown from the asymptotic 

1 L 
3 5 0  the situation i s  a little more complicated. W r i t e p -  f o  s/h , 
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1 . L  

The first term i s  an infinite series whose sum does not exist. It represents the 

unit density which obtains in the absence of an interaction between the wind and 

the cosmic rays . The second series converges and repre- 

sents the reduction of the comic my intensity to first order in . Numeri- 

( 'I, = 0 ) 
3, 

cally we find 

so that the reduction i s  

to th is  accuracy, i n  agreement with the well known result 

obtained when the Fokker-Planck equation i s  summed over 

i n  tegm ted. 

The mean particle energy i s  

= - 2TI -e+ f 
Y VL 

m ri 

7- before being 
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so that the small mean energy loss i s  

At the origin, h i s  reduces to 
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upon using (A7) for the numerical value of the series. It i s  evident from (All) that 

for any fixed value of 

tional to 5 0  

r/  , the energy reduction i s  directly propor- 

. At the origin the fractional energy change i s  simply 

( 9 3 )  '3. 
4 It is  convenient for purposes of plotting to write the series (A3) and (A4) in a more 

invariant form. It i s  readily seen from (A12) that the particles undergo very l i t t le 

deceleration when 3, ( d  d so that LJ (r, T )  is 

negligible except in a small neighborhood, of the order of a few times (h7) , 

of To - Soput T = T o  - 5 (-AT) e : % ( f - ~ f i  n/3) 

wherehis a number of the order of unity i n  the region of physical interest. In th is  
S 

region write 
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4 

in the limit as 3, 3 0 . Then (A3) and (A4) may be written 

in terms of the energy displacement S @ T) . Fig. 1 i s  plotted from (A14). 
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Figures 

Fig. 1. The energy distribution at  the origin r = 0 i s  shown in terms of 

the prometer S ATCO) / <ATLO))  for monoenergetic 

particles with T= T e  introduced steadily a t  C = ft 
. Fig. 2. The mean particle energy at the origin is shown for particles introduced 

with energy T = Tg a t  r= . The s t r a i g h t  lines repre- 

sent the asymptotic form for Rv/y < c 
curved lines represent the asymptotic form for R v / ~  > > 4 

The broken lines represent an arbitrary interpolation across intermediate 

values. e f  R w / ~  , 

. The 

. 
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